Covering Disruptive Technology Powering Business in The Digital Age

image
IBM 5 in 5: Radically Accelerating the Process of Discovery will Enable Our Sustainable Future
image
October 2, 2020 Blog

 

By Alessandro Curioni, IBM Fellow, Vice President, IBM Research Europe & Africa; and Kathryn Guarini, COO, IBM Research, Vice President, IBM Impact Science

 

Our mission at IBM is to help our clients change the way the world works. There’s no better example of that than IBM’s annual “5 in 5” technology predictions. Each year, we showcase five ways we believe technology will fundamentally reshape business and society in the next five years, informed by work occurring within IBM Research’s global labs and broader industry trends.

This year’s 5 in 5 predictions focus on accelerating the discovery of new materials to enable a more sustainable future. In line with the United Nation’s global call-to-action through its Sustainable Development Goals, IBM researchers are working to speed up the discovery of new materials that will address significant worldwide problems. Specifically, we are exploring how technology can be used to reinvent the materials design process to find solutions to such as challenges as fostering good health and clean energy as well as bolstering sustainability, climate action and responsible production.

We believe that, within the next half a decade, new materials or novel uses of existing ones will help address many of the global challenges we face: efficiently capturing carbon dioxide from our overburdened atmosphere, and storing it safely, mitigating climate change; finding more sustainable ways to grow crops to feed our surging population while reducing carbon emissions; rethinking batteries and energy storage before we have to rethink our world; developing better antivirals and more sustainable electronic devices.

We’re not there yet, but it’s not just wishful thinking. It’s possible to start getting there, and soon.

We need to turbocharge the way we do materials design, a traditionally hard and complex process — mainly because the chemical space of potential molecular combinations is incredibly vast. There are more possible combinations than there are atoms in the universe. Further, the final properties of materials do not depend only on what they’re made of, but also the processes used for their production and, ultimately, their final structure.

It typically takes roughly 10 years and upwards of $10-$100 million on average to discover one new material with specific properties. We want to cut both years and cost 90 per cent, with the help of cutting-edge technologies. These technologies are artificial intelligence (AI), data augmentation with traditional, classical computing and emerging quantum computing, and so-called generative models and laboratory automation through the open, hybrid cloud.

The convergence of these technologies will allow us to modernise the human process of discovery in a fundamentally new way — moving away from serendipity, luck and chance to calculated confidence.

First, AI will consolidate all of humanity’s knowledge on a specific topic — say, a global challenge we want to address. Then supercomputers and, eventually, quantum simulations will cover our knowledge gaps. Using past data the AI obtained, we will create models to generate hypotheses about the new materials necessary to tackle that challenge. Finally, we will automate the making and testing of these materials, with the help of cloud technologies. All of IBM’s industry-leading work in quantum, AI, high-performance computing and hybrid cloud is therefore accelerating the process of discovery.

IBM designed an approach to accelerate material discovery where AI is a key component across the entire chain of the material discovery process. This includes its cloud-powered chemistry lab RoboRXN, which allows researchers to create new materials by predicting the outcome of chemical reactions. Materials can be synthesised 24 hours per day, 7 seven days a week, without disruption, and with limited interaction from humans. Scientists simply have to give the system a molecule they want to make, and the AI in the software will outline a step-by-step recipe along with a list of ingredients.

The free-to-use AI model behind RoboRXN was made available two years ago and has already predicted nearly 1 million reactions for students, professors and scientists. Since earlier this year, IBM scientists around the world are using RoboRXN to synthesise materials for carbon capture, photoresists and antivirals. It will soon go to work generating materials for nitrogen fixation.

For example, researchers in Yorktown Heights, New York were able to run a synthesis reaction sent over the cloud to the RoboRXN lab in Zurich — 6,000 kilometres away — to try to generate a target molecule for a new material for CO2 capture. RoboRXN analysed the resulting molecules, which were synthesised overnight and then shipped to the IBM Research Lab in Almaden, California for further analysis.

Right now, researchers are synthesising candidate molecules to test RoboRXN’s capabilities. The long-term goal is that we will take candidate molecules from the AI-driven systems that are predicting new materials, synthesise them completely autonomously and test them.

Imagine not just one RoboRXN, but an entire bank of them receiving instructions via the cloud from chemists and material scientists around the world. It’s not just accelerating discovery, it’s turbocharging the production of ideas at scale.

This doesn’t mean that IBM is getting into the material manufacturing business. Our researchers are focused on developing the processes that will speed discovery and helping our clients and collaborators put them to use. One of IBM’s previous 5 in 5 predictions offers a good blueprint for how this can be accomplished.

In 2019, IBM predicted that, in the next five years, plastic recycling advancements like VolCat could be adopted around the globe to combat global plastic waste. VolCat uses a benign organic catalyst to selectively digest the most common household plastic – polyethene terephthalate (PET) – back to its monomer constituents. After purification, the monomer can easily be re-polymerised to form new PET.

IBM Research plans to kick off the next phase of its plan to commercialise the VolCat plastic recycling process. We intend to team with an industry partner to design, build and operate a pilot plant to prove the scalability and economics of the VolCat process. If successful, that work would progress to manufacturing plants all over the world and enable manufacturers to make plastics, fibres or films out of the resulting monomers, without the need to create new plastics from petrochemicals.

IBM’s 5 in 5 demonstrates what’s possible when a scientific approach is applied to finding new methods and solutions to the world’s challenges. The world needs science more than ever and, with it, we can face today’s uncertainties to realise tomorrow’s progress.

(0)(0)

Archive